Exam. Code : 103204 Subject Code : 1109

B.A./B.Sc. $4^{\text {th }}$ Semester MATHEMATICS

Paper-I (Statics and Vector Calculus)

Time Allowed-Three Hours] [Maximum Marks-50
Note :-Do any FIVE questions, selecting at least TWO questions from each section. All questions carry equal marks.

SECTION-A

1. (a) Two forces P and Q acting at a point have a resultant R. If P is doubled, R is doubled and if Q is doubled and reversed in direction, even then R is doubled. Show that $P: Q: R=\sqrt{6}: \sqrt{2}: \sqrt{5}$.
(b) A given force F is resolved into two components inclined at 45° and α. If the latter component is $\frac{\sqrt{2}}{\sqrt{3}} \mathrm{~F}$, find α and the other component.
2. (a) A light string of length l is fastened to two points A and B at the same level at a distance a apart. A ring of weight W can slide on the string and horizontal force P is applied to it such that it is in equilibrium vertically below B. Show that
$\mathrm{P}=\frac{\mathrm{aW}}{\ell}$ and tension of the string is $\frac{\mathrm{W}\left(\ell^{2}+\mathrm{a}^{2}\right)}{2 \ell^{2}}$.
(b) If the position of the resultant of two like parallel forces remains unaltered when their positions are interchanged, show that the forces are equal.
3. (a) P and Q are two like parallel forces. If two equal and opposite forces S along any two parallel lines at a distance b apart in the plane of P and Q are combined with them, show that the resultant is displaced through a distance $\frac{b S}{P+Q}$.
(b) A uniform beam 12 metres long and weighing 72 Kg . is supported on two pegs, 1 m and 2 m , respectively from the ends. Where must a weight of 24 Kg . be hung to make the pressure on each peg equal.
4. (a) Forces of magnitude 3, 4, 2 and 1 units act respectively along the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA of a square ABCD of sides 3 units. Reduce the system to a force at A and a couple.
(b) A uniform beam of length 2 a , rests against a smooth vertical plane over a smooth peg at a distance b from the plane. If θ be the inclination of the beam to the vertical, show that $\sin ^{3} \theta=\frac{\mathrm{b}}{\mathrm{a}}$.

2665(2519)/EBH-18564
5. (a) A light ladder rests in limiting equilibrium with its lower-end on a rough floor and the upper-end against a smooth vertical wall. Find how high a man of weight W can climb without slipping takes place.
(b) Find C.G. of a solid right circular cone.

SECTION-B

6. (a) If $\phi=3 x^{2} y$ and $\psi=x z^{2}-2 y$, find $\operatorname{grad}(\operatorname{grad} \phi$. $\operatorname{grad} \psi)$.
(b) If $u=x+y+z, v=x^{2}+y^{2}=z^{2}, w=x y+y z+z x$, prove that $(\operatorname{grad} u) \cdot(\operatorname{grad} v) \times(\operatorname{grad} w)=0$.
7. (a) Find the directional derivative of the function $\phi=x^{2}+y^{2}+2 z^{2}$ at the point $P(1,-1,2)$ in the direction of the line PL, where L is the point $(1,2,3)$. Also, find maximum value of directional derivative at $\mathrm{P}(1,-1,2)$.
(b) For the function $\mathrm{f}=\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$, find the directional derivative making an angle 30° with the positive x -axis at point $(0,1)$.
8. (a) Find the constants $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that the vector :

$$
\overrightarrow{\mathrm{F}}=(x+2 y+a z) \hat{\mathrm{i}}+(b x-3 y-z) \hat{\mathrm{j}}+(4 x+c y+2 z) \hat{\mathrm{k}}
$$

is irrotational.

2665(2519)/EBH-18564
(b) Given the vector field $\overrightarrow{\mathrm{V}}=\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 x y\right) \hat{\mathrm{i}}+$ $(x z-x y+y z) \hat{j}+\left(z^{2}+x^{2}\right) \hat{k}$, find curl \vec{V}. Show that the vector given by curl $\overrightarrow{\mathrm{V}}$ at $\mathrm{P}(1,2,-3)$ and $Q(2,3,12)$ are orthogonal.
9. (a) State and prove Gauss's divergence theorem.
(b) By transforming to a triple integral evaluate $I=\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)$, where S is the closed surface bounded by the planes $\mathrm{z}=0$, $\mathrm{z}=\mathrm{b}$ and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$.
10. (a) Verify Green's theorem in the plane for $\oint_{C}\left[\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y\right]$, where C is the boundary of the region bounded by $y=\sqrt{x}$ and $y=x^{2}$.
(b) Evaluate $\iint_{S}(\nabla \times \overrightarrow{\mathrm{F}}) \cdot \hat{\mathrm{n} d S}$, where $\overrightarrow{\mathrm{F}}=(2 \mathrm{x}-\mathrm{y}) \hat{\mathrm{i}}$ $y z^{2} \hat{j}-y^{2} z \hat{k}$ and S is the surface given by $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1, \mathrm{z} \geq 0$.

